Polynomial Optimization in Quantum Information Theory

Sabine Burgdorf

University of Konstanz

ICERM - 2018
Real Algebraic Geometry and Optimization
Warm Up

- **Entanglement** is one of the key features in Quantum Information
- Bell ’64:

- How to distinguish \mathcal{C} and \mathcal{Q}?
- What is the correct definition for \mathcal{Q}? Does it matter?
- Can Polynomial Optimization help to understand these sets?
RAG and POP basics

Polynomial Optimization

- $f \in \mathbb{R}[X]$ polynomial in commuting variables
- $g_0 = 1, g_1, \ldots, g_r \in \mathbb{R}[X]$ defining a semi-algebraic set:

$$K = \{a \in \mathbb{R}^n \mid g_0(a) \geq 0, \ldots, g_r(a) \geq 0\}$$

- Want to minimize f over K

$$f_* = \inf_{a \in K} f(a) \quad \text{s.t. } a \in K$$

$$= \sup_{a \in \mathbb{R}} \quad \text{s.t. } f - a \geq 0 \text{ on } K$$

- NP-hard
RAG and POP basics

RAG helps

\[f_\star = \sup a \in \mathbb{R} \quad \text{s.t.} \quad f - a \geq 0 \text{ on } K \]

NP-hard 😞

- \[M(g) := \{ p = \sum_j h_j^2 g_{ij} \text{ for some } h_i \in \mathbb{R}[X] \} \]
- sos relaxation

\[f_{sos} = \sup a \in \mathbb{R} \quad \text{s.t.} \quad f - a \in M(g) \]

"SDP" 😊
RAG and POP basics

RAG helps

\[
f_\star = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \geq 0 \text{ on } K
\]

NP-hard 😞

- \(M(g) := \{ p = \sum_j h_j^2 g_{ij} \text{ for some } h_i \in \mathbb{R}[X] \}\)
- sos relaxation

\[
f_{\text{sos}} = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \in M(g)
\]

"SDP" 😊

- \(f_{\text{sos}}\) is always a lower bound but might be strict

- If \(M(g)\) is archimedean:
 \[f_\star = f_{\text{sos}}\]

\[x_1^4 x_2^2 + x_1^2 x_2^4 - 3 x_1^2 x_2^2 + 1\]
RAG and POP basics

SOS hierarchy

- $M(g)_t := \{p = \sum_j h_j^2 g_{ij} \text{ for some } h_i \in \mathbb{R}[X]_t\}$
- sos hierarchy

$$f_t = \sup a \in \mathbb{R} \text{ s.t. } f - a \in M(g)_t$$

- We have
 - $f_t \leq f_{t+1} \leq f_*$
 - f_t converges to f_{sos} as $t \to \infty$
 - If $M(g)$ is archimedean: $f_{sos} = f_*$
RAG and POP basics

SOS hierarchy

- \(M(g)_t := \{ p = \sum_j h_j^2 g_{ij} \text{ for some } h_i \in \mathbb{R}[X]_t \} \)
- sos hierarchy
 \[
 f_t = \sup a \in \mathbb{R} \text{ s.t. } f - a \in M(g)_t
 \]

- We have
 - \(f_t \leq f_{t+1} \leq f_* \)
 - \(f_t \) converges to \(f_{sos} \) as \(t \to \infty \)
 - If \(M(g) \) is archimedean: \(f_{sos} = f_* \)
- Certificate of exactness:
 - Flatness of dual solution
 - Allows extraction of optimizers
NC-RAG and NC-POP

NC Polynomials

▶ Want to replace scalar variables by matrices/operators
▶ Free algebra $\mathbb{R}\langle X \rangle$ with noncommuting variables X_1, \ldots, X_n
▶ Polynomial

\[f = \sum_{w} f_w w \]

▶ Let $A \in (S^d)^n$: $f(A) = f_1 I_d + f_{X_1} A_1 + f_{X_2 X_1} A_2 A_1 \ldots$
NC-RAG and NC-POP

NC Polynomials

- Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle X \rangle$ with noncommuting variables X_1, \ldots, X_n
- Polynomial
 \[f = \sum_w f_w w \]
- Let $A \in (S^d)^n$: $f(A) = f_1 I_d + f_{X_1} A_1 + f_{X_2 X_1} A_2 A_1 \ldots$
- Add involution \ast on $\mathbb{R}\langle X \rangle$
 - fixes \mathbb{R} and $\{X_1, \ldots, X_n\}$ pointwise
 - $X_i^\ast = X_i$
- Consequence
 \[f^\ast f(A) = f(A)^T f(A) \succeq 0 \]
NC-RAG and NC-POP

NC Polynomial Optimization

- Let $f \in \mathbb{R}\langle X\rangle$
- $g_0 = 1$, $g_1, \ldots, g_r \in \mathbb{R}\langle X\rangle$ defining a semi-algebraic set:

 $$K = \{A \mid g_0(A) \succeq 0, \ldots, g_r(A) \succeq 0\}$$

- Want to minimize f over K

$$f^* = \sup a \in \mathbb{R} \text{ s.t. } f - a \succeq 0 \text{ on } K$$
NC-RAG and NC-POP

Eigenvalue optimization

- Let $f \in \mathbb{R}\langle X \rangle$

$$f_{nc} = \sup a \in \mathbb{R} \quad \text{s.t.} \quad f - a \succeq 0 \text{ on } K$$

NP-hard 😞

- Observation: Checking if $f = \sum_i h_i^* h_i$ is an SDP
 so as well checking $f = \sum_j h_j^* g_{ij} h_j$ (with degree bounds)
NC-RAG and NC-POP

Eigenvalue optimization

- Let $f \in \mathbb{R}\langle X \rangle$

\[f_{nc} = \sup a \in \mathbb{R} \text{ s.t. } f - a \succeq 0 \text{ on } K \]

- Observation: Checking if $f = \sum_i h_i^* h_i$ is an SDP so as well checking $f = \sum_j h_j^* g_i h_j$ (with degree bounds)

- sos relaxation

\[M_{nc}(g) := \{ p = \sum_j h_j^* g_i h_j \text{ for some } h_i \in \mathbb{R}\langle X \rangle \} \]

\[f_{sos} = \sup a \in \mathbb{R} \text{ s.t. } f - a \in M_{nc}(g) \]

- Fact: $f_{sos} \leq f_{nc}$

- Theorem (Helton et al.): If $M_{nc}(g)$ is archimedean, then $f_{sos} = f_{nc}$.
NC-RAG and NC-POP

Eigenvalue optimization

- Let \(f \in \mathbb{R}\langle X \rangle \)
 \[
 f_{nc} = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \succeq 0 \text{ on } K
 \]
 NP-hard 😞

- \(M_{nc}(g)_t := \{ p = \sum_j h_j^* g_j h_j \text{ for some } h_j \in \mathbb{R}\langle X \rangle_t \} \)

- sos hierarchy
 \[
 f_t = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \in M_{nc}(g)_t
 \]
 SDP 😊

- \(f_t \leq f_{t+1} \leq f_{nc} \) but inequalities might be strict

- \(f_t \) converges to \(f_{sos} \) as \(t \to \infty \)

- If \(M_{nc}(g) \) is archimedean: \(f_{sos} = f_{nc} \) and hence \(f_t \to f_{nc} \) as \(t \to \infty \)
NC-RAG and NC-POP

Trace optimization

- Let \(f \in \mathbb{R}\langle X\rangle \)

\[
f_{tr} = \sup a \in \mathbb{R} \quad \text{s.t.} \quad \text{Tr}(f - a) \geq 0 \text{ on } K \quad \text{NP-hard}
\]

- \(K \) contains only operators, for which a trace is defined
NC-RAG and NC-POP

Trace optimization

- Let $f \in \mathbb{R}\langle X \rangle$

\[
f_{tr} = \sup a \in \mathbb{R} \quad \text{s.t.} \quad \text{Tr}(f - a) \geq 0 \text{ on } K
\]

NP-hard 😞

- K contains only operators, for which a trace is defined
- If $f = \sum_j h_j^* g_j h_j + \sum_k [p_k, q_k]$ then Tr($f(A)$) ≥ 0 for all $A \in K$
- sos relaxation

\[
M_{tr}(g) := \{\sum_j h_j^* g_j h_j \text{ for some } h_i \in \mathbb{R}\langle X \rangle\} + [\mathbb{R}\langle X \rangle, \mathbb{R}\langle X \rangle]
\]

\[
f_{sos} = \sup a \in \mathbb{R} \quad \text{s.t.} \quad f - a \in M_{tr}(g)
\]

- Fact: $f_{sos} \leq f_{tr}$
- Theorem (B., Klep et al.): If $M_{tr}(g)$ is archimedean, then $f_{sos} = f_{tr}$.
NC-RAG and NC-POP

Trace optimization

- Let $f \in \mathbb{R} \langle X \rangle$

$$f_{tr} = \sup a \in \mathbb{R} \quad \text{s.t.} \quad \text{Tr}(f - a) \geq 0 \text{ on } K$$

- $M_{tr}(g)_t := \{ \sum_j h_j^* g_i h_j \text{ for some } h_j \in \mathbb{R} \langle X \rangle_t \} + \sum [\mathbb{R} \langle X \rangle, \mathbb{R} \langle X \rangle]$ (NP-hard 😞)

- sos hierarchy

$$f_t = \sup a \in \mathbb{R} \quad \text{s.t.} \quad f - a \in M_{tr}(g)_t$$ (SDP 😊)

- $f_t \leq f_{t+1} \leq f_{tr}$ but inequalities might be strict

- f_t converges to f_{sos} as $t \to \infty$

- If $M_{tr}(g)$ is archimedean: $f_{sos} = f_{tr}$ and hence $f_t \to f_{tr}$ as $t \to \infty$
Back to Quantum Information

- **Entanglement** is one of the key features in Quantum Information
- Bell ’64:

![Diagram]

- How to distinguish \mathcal{C} and \mathcal{Q}?
- What is the correct definition for \mathcal{Q}? Does it matter?
- Can Polynomial Optimization help to understand these sets?
Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}
Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. $\mathcal{H}_A \otimes \mathcal{H}_B$
- ψ is entangled if it is not a product state $\psi_A \otimes \psi_B$ with $\psi_A \in \mathcal{H}_A, \psi_B \in \mathcal{H}_B$
Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. $\mathcal{H}_A \otimes \mathcal{H}_B$
- ψ is entangled if it is not a product state $\psi_A \otimes \psi_B$ with $\psi_A \in \mathcal{H}_A, \psi_B \in \mathcal{H}_B$

- A state $\psi \in \mathcal{H}$ can be measured
 - outcomes $a \in A$
 - POVM: a family $\{E_a\}_{a \in A} \subseteq B(\mathcal{H})$ with $E_a \geq 0$ and $\sum_{a \in A} E_a = 1$
 - probability of getting outcome a is $p(a) = \psi^T E_a \psi$.
Nonlocal bipartite correlations

- Question sets S, T, Answer sets A, B
- No (classical) communication

- Which correlations $p(a, b \mid s, t)$ are possible?
Correlations

Classical strategy \mathcal{C}

Independent probability distributions $\{p^a_s\}_a$ and $\{p^b_t\}_b$:

$$p(a, b \mid s, t) = p^a_s \cdot p^b_t$$

shared randomness: allow convex combinations

Quantum strategy \mathcal{Q}

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on Hilbert spaces H_A, H_B,

$$\psi \in H_A \otimes H_B$$:

$$p(a, b \mid s, t) = \psi^T (E^a_s \otimes F^b_t) \psi$$

▶ Nonlocality:

$$(E^a_s \otimes 1)(1 \otimes F^b_t) = (1 \otimes F^b_t)(E^a_s \otimes 1)$$

▶ If $\psi = \psi_A \otimes \psi_B$ then we have classical correlation
Correlations

Classical strategy \mathcal{C}

Independent probability distributions $\{p^a_s\}_a$ and $\{p^b_t\}_b$:

$$p(a, b \mid s, t) = p^a_s \cdot p^b_t$$

shared randomness: allow convex combinations

Quantum strategy \mathcal{Q}

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$, $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$p(a, b \mid s, t) = \psi^T (E^a_s \otimes F^b_t) \psi$$

- Nonlocality: $(E^a_s \otimes 1)(1 \otimes F^b_t) = (1 \otimes F^b_t)(E^a_s \otimes 1)$
- If $\psi = \psi_A \otimes \psi_B$ then we have classical correlation
More correlations

Quantum strategy Q

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$, $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$p(a, b \mid s, t) = \psi^T (E^a_s \otimes F^b_t) \psi$$
More correlations

Quantum strategy Q

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$, $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$p(a, b \mid s, t) = \psi^T (E^a_s \otimes F^b_t) \psi$$

Quantum strategy Q_c

POVMs $\{E^a_s\}_a$ and $\{F^b_t\}_b$ on a joint Hilbert space, but $[E^a_x, F^b_y] = 0$:

$$p(a, b \mid s, t) = \psi^T (E^a_s \cdot F^b_t) \psi$$

Fact

$$\mathcal{C} \subseteq Q \subseteq \overline{Q} \subseteq Q_c$$
Tsirelson’s problem

Fact

\[\mathcal{C} \subseteq \mathcal{Q} \subseteq \overline{\mathcal{Q}} \subseteq \mathcal{Q}_c \]

- Bell: \(\mathcal{C} \neq \mathcal{Q} \)
- closure conjecture [Slofstra ’16]: \(\mathcal{Q} \neq \overline{\mathcal{Q}} \)
- weak Tsirelson [Slofstra ’16]: \(\mathcal{Q} \neq \mathcal{Q}_c \)
- Dykema et al. ’17: Concrete example in a decent subset of \(\mathcal{Q} \)
- strong Tsirelson (open): Is \(\overline{\mathcal{Q}} = \mathcal{Q}_c \) ?
- strong Tsirelson is equivalent to Connes embedding problem
Nonlocal games

- Characterized by
 - 2 sets of questions S, T, asked with probability distribution π
 - 2 sets of answers A, B
 - A winning predicate $V : A \times B \times S \times T \rightarrow \{0, 1\}$
Nonlocal games

- Characterized by
 - 2 sets of questions S, T, asked with probability distribution π
 - 2 sets of answers A, B
 - A winning predicate $V : A \times B \times S \times T \rightarrow \{0, 1\}$

- Winning probability (value of the game)

$$\omega = \sup_{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b; s, t) p(a, b | s, t)$$

$$= \sup_{p} \sum_{a, b, s, t} f_{abst} p(a, b | s, t)$$

- Optimize over correlations $p \in \{C, Q, Q_c\}$
SOS relaxation over \mathcal{C}

$$\omega_{\mathcal{C}} = \sup_p \sum_{a,b,s,t} f_{abst} p_s^a \cdot p_t^b$$
SOS relaxation over \mathcal{C}

\[
\omega_{\mathcal{C}} = \sup_{p} \sum_{a,b,s,t} f_{\text{abst}} p_s^a \cdot p_t^b
\]

- We can write this as POP:
 - \(f((p, q)) := \sum_{a,b,s,t} f_{\text{abst}} p_s^a \cdot q_t^b \in \mathbb{R}[p, q] \)
 - \(K = \{(p, q) \mid p_s^a, q_t^b \geq 0, \sum_a p_s^a = \sum_b q_t^b = 1\} \)
 - \(M(g) \) is archimedean
SOS relaxation over C

$$\omega_C = \sup_p \sum_{a,b,s,t} f_{abst} p_s^a \cdot p_t^b$$

- We can write this as POP:
 - $f((p, q)) := \sum_{a,b,s,t} f_{abst} p_s^a \cdot q_t^b \in \mathbb{R}[p, q]$
 - $K = \{(p, q) \mid p_s^a, q_t^b \geq 0, \sum_a p_s^a = \sum_b q_t^b = 1\}$
 - $M(g)$ is archimedean

- Hence

$$\begin{align*}
\omega_C &= \sup f(p, q); \quad \text{s.t. } (p, q) \in K \\
&= \inf a \in \mathbb{R}; \quad \text{s.t. } a - f \geq 0 \text{ on } K \\
&= \inf a \in \mathbb{R}; \quad \text{s.t. } a - f \in M(g) \quad (f_{sos}) \\
&\leq \inf a \in \mathbb{R}; \quad \text{s.t. } a - f \in M(g)_t \quad (f_t)
\end{align*}$$

- Converging hierarchy of SDP upper bounds
SOS relaxation over Q_c

\[\omega_{Q_c} = \sup \sum_{a,b,s,t} f_{abst} \psi^T (E_s^a \cdot F_t^b) \psi \]
SOS relaxation over \(Q_c \)

\[
\omega_{Q_c} = \sup \sum_{a,b,s,t} f_{abst} \psi^T (E^a_s \cdot F^b_t) \psi
\]

- We can write this as NC-POP:
 - \(f(E, F) := \sum_{a,b,s,t} f_{abst} E^a_s \cdot F^b_t \in \mathbb{R} \langle E, F \rangle \)
 - \(K = \{(E, F) \mid E_s, F_t \succeq 0, \sum_a E^a_s = \sum_b F^b_t = 1, [E^a_s, F^b_t] = 0\} \)
 - \(M_{nc}(g) \) is archimedean
SOS relaxation over Q_c

\[
\omega_{Q_c} = \sup \sum_{a,b,s,t} f_{abst} \psi^T (E^a_s \cdot F^b_t) \psi
\]

- We can write this as NC-POP:
 - \(f(E, F) := \sum_{a,b,s,t} f_{abst} E^a_s \cdot F^b_t \in \mathbb{R} \langle E, F \rangle \)
 - \(K = \{ (E, F) \mid E_s, F_t \succeq 0, \sum_a E^a_s = \sum_b F^b_t = 1, [E^a_s, F^b_t] = 0 \} \)
 - \(M_{nc}(g) \) is archimedean

- Hence

\[
\omega_C = \sup \psi^T f(E, F) \psi; \quad \text{s.t.} \quad (E, F) \in K
\]

\[
= \inf a \in \mathbb{R} \quad \text{s.t.} \quad a - f \succeq 0 \text{ on } K
\]

\[
= \inf a \in \mathbb{R} \quad \text{s.t.} \quad a - f \in M_{nc}(g) \quad (f_{sos})
\]

\[
\leq \inf a \in \mathbb{R} \quad \text{s.t.} \quad a - f \in M_{nc}(g)_t \quad (f_t)
\]

- Converging hierarchy of SDP upper bounds
SOS relaxation over Q

$$\omega_Q = \sup \sum_{a,b,s,t} f_{abst} \Tr(E^a_s \otimes F^b_t)$$

- Cameron et al.: For most games we have $p(a, b \mid s, t) = \Tr(\tilde{E}^a_s \tilde{F}^b_t)$ with $\tilde{E}^a_s, \tilde{F}^b_t \succeq 0$, $\sum_a \tilde{E}^a_s = \sum_b \tilde{F}^b_t = D$ with $\Tr(D^2) = 1$
SOS relaxation over \mathcal{Q}

$$\omega_{\mathcal{Q}} = \sup \sum_{a,b,s,t} f_{\text{abst}} \text{Tr}(E^a_s \otimes F^b_t)$$

- Cameron et al.: For most games we have $p(a, b | s, t) = \text{Tr}(\tilde{E}^a_s \tilde{F}^b_t)$ with $\tilde{E}^a_s, \tilde{F}^b_t \succeq 0$, $\sum_a \tilde{E}^a_s = \sum_b \tilde{F}^b_t = D$ with $\text{Tr}(D^2) = 1$

- We can write this as NC-POP:
 - $f(E, F) := \sum_{a,b,s,t} f_{\text{abst}} E^a_s \cdot F^b_t \in \mathbb{R} \langle E, F \rangle$
 - $K = \{(E, F) | E_s, F_t \succeq 0, \sum_a E^a_s = \sum_b F^b_t = D, \text{Tr}(D^2) = 1\}$

- Hence

$$\omega_C = \sup \text{Tr} f(E, F); \quad \text{s.t.} \quad (E, F, D) \in K \leq \inf a \in \mathbb{R} \quad \text{s.t.} \quad a - f \in M_{\text{tr}}(g)$$

- Converging sequence of upper SDP bounds
CHSH Game

- Questions $S = T = \{0, 1\}$, Answers $A = B = \{0, 1\}$
- Alice & Bob win, if $a + b \equiv st \mod 2$
CHSH Game

- Questions \(S = T = \{0, 1\} \), Answers \(A = B = \{0, 1\} \)
- Alice & Bob win, if \(a + b \equiv st \ mod \ 2 \)
- \(\omega_C = \frac{3}{4} \)
- \(\omega_Q = \omega_{Q_c} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.854 \)
- 1st level of SOS hierarchies are exact
CHSH Game

- Questions $S = T = \{0, 1\}$, Answers $A = B = \{0, 1\}$
- Alice & Bob win, if $a + b \equiv st \mod 2$
- $\omega_c = \frac{3}{4}$
- $\omega_Q = \omega_{Q_c} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.854$
- 1st level of SOS hierarchies are exact

- Alternative formulation:
- 2 measurements with 2 outcomes each: $E_s^0, E_s^1, F_t^0, F_t^1$
- Setting $E_s := E_s^0 - E_s^1$, $F_t := F_t^0 - F_t^1$ one obtains the CHSH inequality

$$f_{CHSH} := E_0 F_0 + E_0 F_1 + E_1 F_0 - E_1 F_1$$

- Optimizing f_{CHSH} over variants of C, Q give ω_C, ω_Q
\(l_{3322} \) inequality

- Questions \(S = T = \{0, 1, 2\} \), Answers \(A = B = \{0, 1\} \)

\[
f := E_0F_0 + E_0F_1 + E_0F_2 + E_1F_0 + E_1F_1 - E_1F_3 + E_2F_0 - E_2F_1 - E_0 - 2F_0 - F_1
\]
Questions $S = T = \{0, 1, 2\}$, Answers $A = B = \{0, 1\}$

\[
f := E_0 F_0 + E_0 F_1 + E_0 F_2 + E_1 F_0 + E_1 F_1 - E_1 F_3 + E_2 F_0 - E_2 F_1
- E_0 - 2F_0 - F_1
\]

Maximizing over C: $f_* \leq 0$

Best lower bound: 0.250875384
l_{3322} inequality

- Questions $S = T = \{0, 1, 2\}$, Answers $A = B = \{0, 1\}$

$$f := E_0 F_0 + E_0 F_1 + E_0 F_2 + E_1 F_0 + E_1 F_1 - E_1 F_3 + E_2 F_0 - E_2 F_1 - E_0 - 2F_0 - F_1$$

- Maximizing over C: $f_\ast \leq 0$
- Best lower bound: 0.250875384

- NC-SOS upper bounds:

<table>
<thead>
<tr>
<th>level</th>
<th>psd</th>
<th>trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.375</td>
<td>0.375</td>
</tr>
<tr>
<td>2</td>
<td>0.25094006</td>
<td>0.2509397</td>
</tr>
<tr>
<td>3</td>
<td>0.25087556</td>
<td>0.2508754</td>
</tr>
</tbody>
</table>

- Pal & Vertesi computed (eigenvalue) SOS-bounds for 240 Bell inequalities of which 20 are not matching ($\geq 10^{-4}$) the lower bound. 4 of them get exact ($\leq 10^{-8}$) using trace SOS-bounds, about 1/2 of them improve
Quantum coloring as feasibility problem

\[\sum_{i \in [t]} x_i u = 1 \quad \forall u \in V(G), \forall i \neq j, \forall u \in V(G), \forall uv \in E(G) = \min_{t \in \mathbb{N}} \text{s.t.} \]

We can write this as

\[\min_{t \in \mathbb{N}} \text{s.t.} \exists \text{operator solution of } (\ast) \]
Quantum coloring as feasibility problem

\[\chi(G) = \min t \in \mathbb{N} \text{ s.t. } x_i^u \in \{0, 1\}, u \in V(G), \; i \in [t], \]

\[\sum_{i \in [t]} x_i^u = 1 \quad \forall u \in V(G), \]

\[x_i^i x_j^j = 0 \quad \forall i \neq j, \forall u \in V(G), \]

\[x_i^u x_j^v = 0 \quad \forall uv \in E(G) \]
Quantum coloring as feasibility problem

\[\chi_q(G) = \min t \in \mathbb{N} \text{ s.t. } x_i^u \succeq 0, u \in V(G), i \in [t], \]

\[\sum_{i \in [t]} x_i^u = 1 \quad \forall u \in V(G), \]

\[x_i^u x_j^u = 0 \quad \forall i \neq j, \forall u \in V(G), \quad (\ast) \]

\[x_i^u x_i^v = 0 \quad \forall uv \in E(G) \]

\[(x_i^u)^2 = x_i^u \quad \forall u \in V(G), i \in [t] \]
Quantum coloring as feasibility problem

\[\chi_q(G) = \min t \in \mathbb{N} \text{ s.t. } x_{ui}^i \geq 0, u \in V(G), i \in [t], \]

\[\sum_{i \in [t]} x_{ui}^i = 1 \quad \forall u \in V(G), \]

\[x_{ui}^i x_{uj}^j = 0 \quad \forall i \neq j, \forall u \in V(G), \quad (\ast) \]

\[x_{ui}^i x_{uv}^j = 0 \quad \forall uv \in E(G) \]

\[(x_{ui}^i)^2 = x_{ui}^i \quad \forall u \in V(G), i \in [t] \]

- We can write this as

\[\min t \in \mathbb{N} \text{ s.t. } \exists \text{ operator solution of } (\ast) \]
Nullstellensätze

Let $g_1, \ldots, g_r \in \mathbb{C}[X]$

Theorem (weak Nullstellensatz)

Let $I = (g_1, \ldots, g_r)$, $V(I) := \{a \in \mathbb{C}^n \mid g_1(a) = \cdots = g_r(a) = 0\}$. Then

$$V(I) = \emptyset \iff 1 \in I.$$
Nullstellensätze

Let $g_1, \ldots, g_r \in \mathbb{C}[X]

Theorem (weak Nullstellensatz)

Let $I = (g_1, \ldots, g_r)$, $V(I) := \{a \in \mathbb{C}^n \mid g_1(a) = \cdots = g_r(a) = 0\}$. Then

$$V(I) = \emptyset \iff 1 \in I.$$

Let $g_1, \ldots, g_r \in \mathbb{C}\langle X \rangle$

Theorem (Amitsur Nullstellensatz)

Let $Z(I) := \{A \in R^n \mid R \text{ primitive ring}, g_1(A) = \cdots = g_r(A) = 0\}$. Then

$$Z(I) = \emptyset \iff 1 \in (g_1, \ldots, g_r).$$

- We have an algorithm to compute NC Gröbner bases, but it might not terminate...
Against all odds...\(^1\)

- Gröbner basis: \(4 \leq \chi_q(G_{13})\)

\(^1\)with Piovesan, Mancinska, Roberson
Against all odds...\(^1\)

- Gröbner basis: \(4 \leq \chi_q(G_{13}) \leq \chi(G_{13}) = 4\)
- Consequence \(\chi_q(G_{14}) = 4 < 5 = \chi(G_{14})\)

\(^1\)with Piovesan, Mancinska, Roberson
Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- Dual side (linear forms & moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery & might obtain concrete optimizer/strategies
Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms & moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery & might obtain concrete optimizer/strategies

Open problems

- What is the geometry of (quantum) correlations?
- Is there always a finite dimensional solution/strategy for a finite game?
- How can we detect optimality if there is no finite dimensional solution?
Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- Dual side (linear forms & moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery & might obtain concrete optimizer/strategies

Open problems

- What is the geometry of (quantum) correlations?
- Is there always a finite dimensional solution/strategy for a finite game?
- How can we detect optimality if there is no finite dimensional solution?

Thank you for your attention.
POEMA
Polynomial Optimization, Efficiency through Moments and Algebra
Marie Skłodowska-Curie Innovative Training Network
2019-2022

POEMA network goal is to train scientists at the interplay of algebra, geometry and computer science for polynomial optimization problems and to foster scientific and technological advances, stimulating interdisciplinary and intersectorial knowledge exchange between algebraists, geometers, computer scientists and industrial actors facing real-life optimization problems.

Partners:
1. Inria, Sophia Antipolis, France (Bernard Mourrain)
2. CNRS, LAAS, Toulouse, France (Didier Henrion)
3. Sorbonne Université, Paris, France (Mohab Safey el Din)
4. NWO-I/CWI, Amsterdam, the Netherlands (Monique Laurent)
5. Univ. Tilburg, the Netherlands (Etienne de Klerk)
6. Univ. Konstanz, Germany (Markus Schweighofer)
7. Univ. degli Studi di Firenze, Italy (Giorgio Ottaviani)
8. Univ. of Birmingham, UK (Mikal Kočvara)
9. F.A. Univ. Erlangen-Nuremberg, Germany (Michael Stingl)
10. Univ. of Tromsoe, Norway (Cordian Riener)
11. Artelys SA, Paris, France (Arnaud Renaud)

Associate partners:
1. IBM Research, Ireland (Martin Mevissen)
2. NAG, UK (Mike Dewar)
3. RTE, France (Jean Maeght)

15 PhD positions available from Sep. 1st 2019

Contact: bernard.mourrain@inria.fr, the partner leaders,
www-sop.inria.fr/members/Bernard.Mourrain/announces/POEMA/